DPN
2019/11/12
前言:
ResNet 本質上是特徵重用,DenseNet 的特性則是能提取新特徵。DPN 藉著 Higher Order RNN(HORNN) 將兩種網路拼接在一起,同時擁有兩者的特性,也達到更好的效果。
-----
DenseNet
// Review DPN — Dual Path Networks (Image Classification)
-----
DenseNet
// Review DPN — Dual Path Networks (Image Classification)
-----
ResNet (Left) DenseNet (Right)
// Review DPN — Dual Path Networks (Image Classification)
-----
ResNet (Left) DenseNet (Right)
// Review DPN — Dual Path Networks (Image Classification)
-----
DPN
// Review DPN — Dual Path Networks (Image Classification)
-----
# DPN
-----
# DPN
-----
References
◎ 論文
# DPN
Chen, Yunpeng, et al. "Dual path networks." Advances in Neural Information Processing Systems. 2017.
https://papers.nips.cc/paper/7033-dual-path-networks.pdf -----
◎ 英文參考資料
Review DPN — Dual Path Networks (Image Classification)
https://towardsdatascience.com/review-dpn-dual-path-networks-image-classification-d0135dce8817
-----
◎ 簡體中文參考資料
解读Dual Path Networks(DPN,原创) - 知乎
https://zhuanlan.zhihu.com/p/32702293
No comments:
Post a Comment