Monday, November 18, 2019

gaussian_smooth()

gaussian_smooth()

2019/10/07

-----

gaussian_smooth(): filter images with Gaussian blur.

-----

Gaussian blur is a filter used to smooth or blur a digital picture. It replaces pixels with a weighted average of surrounding pixels. The weights come from the Gaussian probability distribution, so the nearest pixels are more influential.

-----


// Gaussian blur - Wikipedia

-----

高斯模糊是用於平滑或模糊數位照片的濾波器。它將像素替換為周圍像素的加權平均值。權重來自高斯機率分佈,所以越近的像素影響力越大。

-----


// Normal distribution - Wikipedia

-----


// 透過 SIMD 加速高斯模糊運算 - HackMD

-----



// The Never Ending Fascination Of The Gaussian Distribution

-----


// 高斯模糊的算法 - 阮一峰的网络日志

-----



// 高斯模糊的算法 - 阮一峰的网络日志

-----


// 透過 SIMD 加速高斯模糊運算 - HackMD

-----



// Gaussian Blurring with Python and OpenCV - Analytics Vidhya - Medium

-----




// image processing - Gaussian Blur - Standard Deviation, Radius and Kernel Size - Signal Processing Stack Exchange

-----




// 高斯平滑 高斯模糊 高斯滤波器 ( Gaussian Smoothing, Gaussian Blur, Gaussian Filter ) C++ 实现 - 斯巴达的勇士已经是雅典的臣民了。。。 - CSDN博客

-----

 // 高斯平滑 高斯模糊 高斯滤波器 ( Gaussian Smoothing, Gaussian Blur, Gaussian Filter ) C++ 实现 - 斯巴达的勇士已经是雅典的臣民了。。。 - CSDN博客


-----




// image processing - How is Gaussian Blur Implemented  - Computer Graphics Stack Exchange

-----








-----

References

What is a Gaussian blur  - Quora
https://www.quora.com/What-is-a-Gaussian-blur

Gaussian blur - Wikipedia
https://en.wikipedia.org/wiki/Gaussian_blur 

Normal distribution - Wikipedia
https://en.wikipedia.org/wiki/Normal_distribution

The Never Ending Fascination Of The Gaussian Distribution
https://analyticsindiamag.com/the-never-ending-fascination-of-the-gaussian-distribution/

image processing - Gaussian Blur - Standard Deviation, Radius and Kernel Size - Signal Processing Stack Exchange
https://dsp.stackexchange.com/questions/10057/gaussian-blur-standard-deviation-radius-and-kernel-size

image processing - How is Gaussian Blur Implemented  - Computer Graphics Stack Exchange
https://computergraphics.stackexchange.com/questions/39/how-is-gaussian-blur-implemented

Gaussian Blurring with Python and OpenCV - Analytics Vidhya - Medium
https://medium.com/analytics-vidhya/gaussian-blurring-with-python-and-opencv-ba8429eb879b

Computer Vision Feature Extraction 101 on Medical Images — Part 3  Difference of Gaussian, and Laplacian of Gaussian
https://towardsdatascience.com/computer-vision-feature-extraction-101-on-medical-images-part-3-difference-of-gaussian-and-b3cbe5c37415

opencv - Difference between Mean and Gaussian Filter in Result - Stack Overflow
https://stackoverflow.com/questions/31131672/difference-between-mean-and-gaussian-filter-in-result

Smoothing Images — OpenCV 2.4.13.7 documentation
https://docs.opencv.org/2.4/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html

Fastest Gaussian Blur (in linear time)
http://blog.ivank.net/fastest-gaussian-blur.html

-----

高斯模糊的算法 - 阮一峰的网络日志
http://www.ruanyifeng.com/blog/2012/11/gaussian_blur.html

高斯平滑 高斯模糊 高斯滤波器 ( Gaussian Smoothing, Gaussian Blur, Gaussian Filter ) C++ 实现 - 斯巴达的勇士已经是雅典的臣民了。。。 - CSDN博客
https://blog.csdn.net/hhygcy/article/details/4329056

高斯平滑 高斯模糊 高斯濾波器 ( Gaussian Smoothing, Gaussian Blur, Gaussian Filter ) C++ 實現 - I am Rocky - CSDN博客
https://blog.csdn.net/rocky_shared_image/article/details/7238796



-----


高斯模糊 - 維基百科,自由的百科全書
https://zh.wikipedia.org/wiki/%E9%AB%98%E6%96%AF%E6%A8%A1%E7%B3%8A 

單元五、空間濾波
http://ccy.dd.ncu.edu.tw/~chen/course/vision/ch5/ch5.htm

[Python]Gaussian Filter-概念與實作 - 天道酬勤 - Medium
https://medium.com/@bob800530/python-gaussian-filter-%E6%A6%82%E5%BF%B5%E8%88%87%E5%AF%A6%E4%BD%9C-676aac52ea17

Python 與 OpenCV – 模糊處理 – CH.Tseng
https://chtseng.wordpress.com/2016/11/17/python-%E8%88%87-opencv-%E6%A8%A1%E7%B3%8A%E8%99%95%E7%90%86/

【影像處理】雜訊與濾波 Noise and Filter - Jason Chen's Blog
https://jason-chen-1992.weebly.com/home/-noise-and-filter

透過 SIMD 加速高斯模糊運算 - HackMD
https://hackmd.io/@jserv/BJOTYoHge?type=view



Premiere Pro視訊特效(Video Effect) 中英文對照參考表 @ MADer 資料庫   痞客邦
https://mader.pixnet.net/blog/post/6079591

No comments: