AI 從頭學(一四):Recommender
2017/03/16
前言:
如何在 Azure 上建立 AI 的個人化新聞推薦系統?本文列出部分參考資料。
底下純屬紙上談兵,若有不足之處,還請不吝指教!
-----
Fig. Recommender(圖片來源:Pixabay)。
-----
Summary:
推薦系統 [1] 可用於個人化新聞推薦 [2]-[6],或是個人化財經新聞推薦 [7], [8]。概念上是在 Hadoop [9]-[30] 上跑 Mahout [31]-[34]。也可以使用記憶體作為暫存的 Spark [35]-[45],在速度上有驚人的提升。實作上則是先用 Sqoop [46] 把 SQL [47] 上的資料搬到 HDFS [48] 上。
如果要在 Azure [49]-[62] 上做,一樣要先把 Azure SQL [63], [64] 的資料先移到 Azure 的 Hadoop,也就是 HDInsight [65]-[67] 上,再跑 Azure 的 Machine Learning Service [68]-[70]。
如要自行將演算法 [2]-[8] 開發成系統,微軟推薦 F# [71]。F# [72]-[84] 屬於 Functional Programming 的程式語言,有簡潔的程式碼、較高的產能等種種好處。
Deep Learning [85]-[91] 也可用來開發推薦系統 [92]-[97],今日頭條是此中翹楚;目前總員工 2,500 名,工程師有 1,500 個,其中 800 名工程師聚焦在演算法、資料分析 [98]。
-----
出版說明:
Collaborative Filtering - RDD-based API - Spark 2.4.4 Documentation
https://spark.apache.org/docs/latest/mllib-collaborative-filtering.html
之前不熟 Big Data 時,幫公司規劃推薦系統,洋洋灑灑找了近百篇資料。其實現在熟了,只要裝好 Spark 再跑一下預設的演算法就可以了:「Collaborative filtering is commonly used for recommender systems.」。較新的作法是使用深度學習,資料也不難找。
-----
References
◎ 01_Recommender
[1] 2015_Recommender Systems Handbook
-----
◎ 02_News
[2] 2013_Personalized News Recommendation Using Ontologies Harvested from the Web
[3] 2013_Mobile Recommender Systems and Their Applications
[4] 2011_News personalization using the CF-IDF semantic recommender
[5] 2010_Personalized news recommendation based on click behavior
[6] 2010_A contextual-bandit approach to personalized news article recommendation
-----
◎ 03_Financial
[7] 2015_Personalized Financial News Recommendation Algorithm Based on Ontology
[8] 2000_Language models for financial news recommendation
-----
◎ 04_Hadoop
[9] 2015_Learning Hadoop 2
[10] 2015_Hadoop,The definitive guide
[11] 2015_Hadoop Essentials
[12] 2015_Hadoop Backup and Recovery Solutions
[13] 2015_Guide to high performance distributed computing, case studies with Hadoop, Scalding and Spark
[14] 2015_Field Guide to Hadoop
[15] 2015_Big data made easy, a working guide to the complete Hadoop toolset
[16] 2015_Big Data Governance, Modern Data Management Principles for Hadoop, NoSQL & Big Data Analytics
[17] 2015_Big Data Forensics, Learning Hadoop Investigations
[18] 2014_Pro Apache Hadoop
[19] 2014_Practical Hadoop security
[20] 2014_Hadoop For Dummies
[21] 2013_Securing Hadoop
[22] 2013_Professional Hadoop Solutions
[23] 2013_Hadoop Real-World Solutions Cookbook
[24] 2013_Hadoop Operations and Cluster Management Cookbook
[25] 2013_Hadoop Cluster Deployment
[26] 2013_Hadoop Beginner's Guide
[27] 2012_Hadoop Operations
[28] 2012_Hadoop in Practice
[29] 2010_Hadoop in Action
[30] 2009_Pro Hadoop
-----
◎ 05_Mahout
[31] 2015_Learning Apache Mahout
[32] 2015_Learning Apache Mahout Classification
[33] 2013_Apache Mahout Cookbook
[34] 2011_Mahout in Action
-----
◎ 06_Spark
[35] 2016_Spark Guide
[36] 2016_Pro Spark Streaming
[37] 2016_High Performance Spark
[38] 2015_Spark for Python Developers
[39] 2015_Spark Core Programming
[40] 2015_Mastering Apache Spark
[41] 2015_Learning Spark
[42] 2015_Getting Started with Apache Spark
[43] 2015_Fast Data Processing with Spark
[44] 2015_Big Data Analytics with Spark
[45] 2015_Advanced Analytics with Spark
-----
◎ 07_Sqoop
[46] 2013_Apache Sqoop Cookbook
-----
◎ 08_SQL
[47] 2013_Microsoft SQL Server 2012 with Hadoop
-----
◎ 09_HDFS
[48] 2010_The Hadoop Distributed File System
-----
◎ 10_Azure
[49] 2015_Microsoft Azure, planning, deploying, and managing your data center in the cloud
[50] 2015_Microsoft Azure Essentials, Fundamentals of Azure
[51] 2015_Microservices, IoT, and Azure, leveraging DevOps and microservice architecture to deliver SaaS solutions
[52] 2015_Hardening Azure Applications
[53] 2015_15 minute Azure Installation, Set up the Microsoft Cloud Server by the Numbers
[54] 2014_Zen of Cloud, Learning Cloud Computing by Examples on Microsoft Azure
[55] 2014_Mastering Hyper-V 2012 R2 With System Center and Windows Azure
[56] 2014_Learning Windows Azure Mobile Services for Windows 8 and Windows Phone 8
[57] 2012_Programming Microsoft's Clouds, Windows Azure and Office 365
[58] 2012_Cloud Architecture Patterns Using Microsoft Azure
[59] 2011_Windows Azure platform
[60] 2011_Azure in Action
[61] 2009_Windows Azure platform
[62] 2009_Introduction to Windows Azure, an introduction to cloud computing using Microsoft Windows Azure
-----
◎ 11_SQL
[63] 2012_Pro SQL Database for Windows Azure, SQL Server in the Cloud
[64] 2010_Pro SQL Azure
-----
◎ 12_HDInsight
[65] 2014_Pro Microsoft HDInsight, Hadoop on Windows
[66] 2014_Microsoft Big Data Solutions
[67] 2013_HDInsight Essentials
-----
◎ 13_ML
[68] 2015_Predictive analytics with Microsoft azure machine learning, build and deploy actionable solutions in minutes
[69] 2015_Data Science in the Cloud with Microsoft Azure Machine Learning and R
[70] 2014_Predictive analytics with Microsoft azure machine learning, build and deploy actionable solutions in minutes
-----
◎ 14_ML_F#
[71] 2015_Machine Learning Projects for _NET Developers
-----
◎ 15_F#
[72] 2016_Beginning F# 4_0
[73] 2015_Learning F# Functional Data Structures and Algorithms
[74] 2015_Expert F# 4_0
[75] 2014_The Book of F#, Breaking Free with Managed Functional Programming
[76] 2013_Windows Phone 7_5 Application Development with F#
[77] 2013_Functional Programming Using F#
[78] 2013_F# for Quantitative Finance
[79] 2013_F# for C# Developers
[80] 2012_Programming F# 3_0
[81] 2012_Expert F# 3_0
[82] 2010_Visual Studio 2010 and _NET 4 Six-in-One
[83] 2010_Expert F# 2_0
[84] 2007_Expert F#
-----
◎ 16_DL_Overview
[85] 2016_Towards Bayesian Deep Learning, A Survey
[86] 2016_Deep Learning on FPGAs, Past, Present, and Future
[87] 2015_Deep learning
[88] 2015_Deep learning in neural networks, An overview
[89] 2014_Deep Learning, Methods and Applications
[90] 2012_Unsupervised feature learning and deep learning, A review and new perspectives
[91] 2009_Learning deep architectures for AI
-----
◎ 17_DL_RS
[92] 2016_Deep neural networks for youtube recommendations
[93] 2016_Collaborative denoising auto-encoders for top-n recommender systems
[94] 2015_Deep collaborative filtering via marginalized denoising auto-encoder
[95] 2015_Collaborative deep learning for recommender systems
[96] 2014_Improving content-based and hybrid music recommendation using deep learning
[97] 2013_Deep content-based music recommendation
[98] 4 年拿下 7,400 萬日活躍用戶,今日頭條已經準備跨入全球市場
http://technews.tw/2016/12/08/toutiao-china-global-market/
No comments:
Post a Comment