YOLO(二):Overview
2020/12/25
-----
https://pixabay.com/zh/photos/yolo-life-neon-letters-on-2817390/
-----
◎ Abstract
-----
◎ Introduction
-----
本論文要解決(它之前研究)的(哪些)問題(弱點)?
-----
# A Survey of Deep Learning-based Object Detection
說明:
-----
◎ Method
-----
解決方法?
-----
# YOLO。
-----
具體細節?
https://hemingwang.blogspot.com/2021/05/yoloillustrated.html
-----
◎ Result
-----
本論文成果。
-----
◎ Discussion
-----
本論文與其他論文(成果或方法)的比較。
-----
成果比較。
-----
方法比較。
-----
◎ Conclusion
-----
◎ Future Work
-----
後續相關領域的研究。
-----
後續延伸領域的研究。
-----
◎ References
-----
# Faster R-CNN。被引用 23747 次。
Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
# YOLO。被引用 12295 次。
Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
# Mask R-CNN。被引用 8887 次。
He, Kaiming, et al. "Mask r-cnn." Proceedings of the IEEE international conference on computer vision. 2017.
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
-----
# A Survey of Deep Learning-based Object Detection
Jiao, Licheng, et al. "A survey of deep learning-based object detection." IEEE Access 7 (2019): 128837-128868.
https://arxiv.org/pdf/1907.09408.pdf
-----
No comments:
Post a Comment