Machine Learning
2019/04/22
-----
Fig. Machine Learning(圖片來源)。
-----
說明:
本文參考 [1] 的架構,將十個主要機器學習演算法 [2] 分成六大類。
C4.5
k-Means
SVM
Apriori
EM
PageRank
AdaBoost
kNN
Naive Bayes
CART
-----
I. Set
II. Metric
III. Linear Algebra
IV. Probability and Statistics
V. Information Theory
VI. Numerical Computation
-----
I. Set
ML(一):Apriori
-----
II. Metric
ML(二):k-Means
ML(三):k-NN
II. Metric
ML(二):k-Means
ML(三):k-NN
-----
III. Linear Algebra
ML(四):FA
ML(五):PCA
ML(六):LDA
ML(七):SVD
ML(八):t-SNE
ML(九):SVM
-----
IV. Probability and Statistics
ML(一0):Naive Bayes
ML(一一):HMM
ML(一二):Linear Regression
ML(一三):Logistic Regression
ML(一四):Ridge Regression
III. Linear Algebra
ML(四):FA
ML(五):PCA
ML(六):LDA
ML(七):SVD
ML(八):t-SNE
ML(九):SVM
-----
IV. Probability and Statistics
ML(一0):Naive Bayes
ML(一一):HMM
ML(一二):Linear Regression
ML(一三):Logistic Regression
ML(一四):Ridge Regression
ML(一五):Lasso Regression
ML(一六):EM
ML(一七):Gibbs
ML(一八):Viterbi
-----
V. Information Theory
ML(一九):Maximum Entropy
ML(二0):Decision Tree
ML(二一):Pruning
ML(二二):Random Forest
ML(一七):Gibbs
ML(一八):Viterbi
-----
V. Information Theory
ML(一九):Maximum Entropy
ML(二0):Decision Tree
ML(二一):Pruning
ML(二二):Random Forest
ML(二三):AdaBoost
ML(二四):XGBoost
-----
VI. Numerical Computation
ML(二五):ALS
ML(二六):PageRank
-----
References
[1] Deep Learning Book - The Star Also Rises
[2] Top 10
-----
VI. Numerical Computation
ML(二五):ALS
ML(二六):PageRank
-----
References
[1] Deep Learning Book - The Star Also Rises
[2] Top 10
Wu, Xindong, et al. "Top 10 algorithms in data mining." Knowledge and information systems 14.1 (2008): 1-37.
[3] Trends
[3] Trends
Jordan, Michael I., and Tom M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349.6245 (2015): 255-260.
[4] TensorFlow和spark的ml以及python的scikit-learn 三者的区别是什么? - 知乎
[4] TensorFlow和spark的ml以及python的scikit-learn 三者的区别是什么? - 知乎
No comments:
Post a Comment