Simple MNIST convnet Illustrated
2021/04/15
-----
https://pixabay.com/zh/photos/iceberg-ice-sol-antarctica-cold-2170383/
-----
https://keras.io/examples/vision/mnist_convnet/
◎ keras.datasets.mnist.load_data
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/mnist/load_data
◎ .astype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html
◎ np.expand_dims
https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html
◎ keras.utils.to_categorical
https://www.tensorflow.org/api_docs/python/tf/keras/utils/to_categorical
◎ keras.Input
https://keras.io/api/layers/core_layers/input/
https://www.tensorflow.org/api_docs/python/tf/keras/Input
◎ layers.Conv2D
https://keras.io/zh/layers/convolutional/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
◎ layers.MaxPooling2D
https://keras.io/zh/layers/pooling/
https://keras.io/api/layers/pooling_layers/max_pooling2d/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D
◎ layers.Flatten
https://keras.io/zh/layers/core/
https://keras.io/api/layers/reshaping_layers/flatten/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten
◎ layers.Dropout
https://keras.io/zh/layers/core/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
◎ layers.Dense
https://keras.io/zh/layers/core/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
◎ model.summary
◎ model.compile
◎ model.fit
◎ model.evaluate
https://keras.io/api/models/model/
https://www.tensorflow.org/api_docs/python/tf/keras/Model
-----
Setup
-----
import numpy as np
##### numpy
##### 「NumPy 是 Python 語言的一個擴充程式庫。支援高階大量的維度陣列與矩陣運算,此外也針對陣列運算提供大量的數學函數函式庫。」-- 中文維基百科。
from tensorflow import keras
##### tensorflow
##### 「TensorFlow是一個開源軟體庫,用於各種感知和語言理解任務的機器學習。目前被 50 個團隊用於研究和生產許多 Google 商業產品,如語音辨識、Gmail、Google 相簿和搜尋,其中許多產品曾使用過其前任軟體 DistBelief。」-- 中文維基百科。
##### keras
##### 「Keras 是一個用 Python 編寫的開源神經網路庫,能夠在 TensorFlow 上執行。Keras 旨在快速實現深度神經網路,專注於使用者友好、模組化和可延伸性。Keras 被認為是一個介面,而非獨立的機器學習框架。它提供了更進階別、更直觀的抽象集,無論使用何種計算後端,使用者都可以輕鬆地開發深度學習模型。Keras 允許使用者在智慧型手機(iOS 和 Android)、網頁或 Java 虛擬機器上製作深度模型。」-- 由中文維基百科縮減。
from tensorflow.keras import layers
##### layers
##### 定義了深度學習模型的一些主要元件,如卷積層、池化層、全連接層、輸出層等等。
-----
Prepare the data
-----
# Model / data parameters
num_classes = 10
##### 阿拉伯數字 0 到 9 共 10 類。
input_shape = (28, 28, 1)
##### 圖片大小為 28x28,單色或彩色,此處 1 為單色。
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
##### (x_train 訓練集影像, y_train 訓練集標籤), (x_test 測試集影像, y_test 測試集標籤)
##### keras.datasets.mnist.load_data()
##### https://waternotetw.blogspot.com/2018/03/keras-mnist.html
# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
##### astype("float32") / 255
##### 用 numpy 進行型別的強制轉換,然後將原來 0 到 255 的整數值變成 0 到 1 的浮點數。
##### https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html
# Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
##### 參考下方範例。
##### >>> x.shape
##### (2, 2)
##### >>> np.expand_dims(x,axis=0).shape
##### (1, 2, 2)
##### >>> np.expand_dims(x,axis=-1).shape
##### (2, 2, 1)
##### https://www.zhihu.com/question/265545749
##### https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
##### to_categorical。keras.utils.to_categorical(y, num_classes=None, dtype='float32') 將類向量(整數)轉換為二進制類矩陣。例如,用於categorical_crossentropy。參數。y:需要轉換成矩陣的類向量(從0到num_classes的整體)。num_classes:總類別數。D型:字符串,輸入所期望的數據類型(float32,float64,int32...)
##### https://keras.io/zh/utils/
##### https://blog.csdn.net/nima1994/article/details/82468965
-----
說明:
-----
x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
-----
說明:
-----
Build the model
-----
model = keras.Sequential(
[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
##### Conv2D
##### 32 個卷積核。
##### kernel_size
##### (3, 3)
##### activation
##### relu
layers.MaxPooling2D(pool_size=(2, 2)),
##### MaxPooling2D
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
##### layers.Flatten() 將輸入展平。不影響批量大小。
layers.Dropout(0.5),
##### layers.Dropout
layers.Dense(num_classes, activation="softmax"),
##### layers.Dense
##### softmax
]
)
model.summary()
-----
說明:
-----
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 26, 26, 32) 320
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0
_________________________________________________________________
flatten (Flatten) (None, 1600) 0
_________________________________________________________________
dropout (Dropout) (None, 1600) 0
_________________________________________________________________
dense (Dense) (None, 10) 16010
=================================================================
Total params: 34,826
Trainable params: 34,826
Non-trainable params: 0
_________________________________________________________________
-----
說明:
-----
Train the model
-----
batch_size = 128
##### batch_size:批次大小。每次反向傳播所處理的樣本數。
epochs = 15
##### epochs
##### iteration 迭代次數。
##### 我們可以將 2000 個樣本的資料集分為 500 個批次,然後將需要 4 次迭代才能完成 1 個 epoch。
##### https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
##### loss
##### categorical_crossentropy
##### optimizer
##### adam
##### metrics
##### accuracy
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
##### validation_split
-----
Epoch 1/15
422/422 [==============================] - 13s 29ms/step - loss: 0.7840 - accuracy: 0.7643 - val_loss: 0.0780 - val_accuracy: 0.9780
Epoch 2/15
422/422 [==============================] - 13s 31ms/step - loss: 0.1199 - accuracy: 0.9639 - val_loss: 0.0559 - val_accuracy: 0.9843
Epoch 3/15
422/422 [==============================] - 14s 33ms/step - loss: 0.0845 - accuracy: 0.9737 - val_loss: 0.0469 - val_accuracy: 0.9877
Epoch 4/15
422/422 [==============================] - 14s 33ms/step - loss: 0.0762 - accuracy: 0.9756 - val_loss: 0.0398 - val_accuracy: 0.9895
Epoch 5/15
422/422 [==============================] - 15s 35ms/step - loss: 0.0621 - accuracy: 0.9812 - val_loss: 0.0378 - val_accuracy: 0.9890
Epoch 6/15
422/422 [==============================] - 17s 40ms/step - loss: 0.0547 - accuracy: 0.9825 - val_loss: 0.0360 - val_accuracy: 0.9910
Epoch 7/15
422/422 [==============================] - 17s 41ms/step - loss: 0.0497 - accuracy: 0.9840 - val_loss: 0.0311 - val_accuracy: 0.9920
Epoch 8/15
422/422 [==============================] - 16s 39ms/step - loss: 0.0443 - accuracy: 0.9862 - val_loss: 0.0346 - val_accuracy: 0.9910
Epoch 9/15
422/422 [==============================] - 17s 39ms/step - loss: 0.0436 - accuracy: 0.9860 - val_loss: 0.0325 - val_accuracy: 0.9915
Epoch 10/15
422/422 [==============================] - 16s 38ms/step - loss: 0.0407 - accuracy: 0.9865 - val_loss: 0.0301 - val_accuracy: 0.9920
Epoch 11/15
422/422 [==============================] - 16s 37ms/step - loss: 0.0406 - accuracy: 0.9874 - val_loss: 0.0303 - val_accuracy: 0.9920
Epoch 12/15
237/422 [===============>..............] - ETA: 7s - loss: 0.0398 - accuracy: 0.9877
-----
說明:
-----
Evaluate the trained model
-----
score = model.evaluate(x_test, y_test, verbose=0)
##### verbose
print("Test loss:", score[0])
print("Test accuracy:", score[1])
-----
說明:
-----
Test loss: 0.023950600996613503
Test accuracy: 0.9922000169754028
-----
說明:
-----
References
[1] Simple MNIST convnet
https://keras.io/examples/vision/mnist_convnet/
[2] DAY27 基於Keras使用CNN進行數字辨識(1) - iT 邦幫忙::一起幫忙解決難題,拯救 IT 人的一天
https://ithelp.ithome.com.tw/articles/10197257
[3] 深度學習基礎理論
https://hemingwang.blogspot.com/2021/02/lee.html
[4] LeNet
https://hemingwang.blogspot.com/2020/12/illustrated-lenet.html
[5] AlexNet
https://hemingwang.blogspot.com/2020/12/illustrated-alexnet.html
-----
No comments:
Post a Comment