Sunday, June 06, 2021

FCN(四):Appendix

 FCN(四):Appendix

2021/06/03

-----


# Focal Loss

說明:


-----


Table 4. Results on NYUDv2. RGBD is early-fusion of the RGB and depth channels at the input. HHA is the depth embedding of [13] as horizontal disparity, height above ground, and the angle of the local surface normal with the inferred gravity direction. RGB-HHA is the jointly trained late fusion model that sums RGB and HHA predictions.

表4. NYUDv2 上的結果。 RGBD 是輸入端的 RGB 和深度通道的早期融合。 HHA 是 [13] 的深度嵌入,包括水平差異,離地面的高度以及局部表面法線與推斷重力方向的夾角。 RGB-HHA 是聯合訓練的後期融合模型,將 RGB 和 HHA 預測相加。

說明:

略。

-----


Table 5. Results on SIFT Flow9 with class segmentation (center) and geometric segmentation (right). Tighe [33] is a non-parametric transfer method. Tighe 1 is an exemplar SVM while 2 is SVM + MRF. Farabet is a multi-scale convnet trained on class-balanced samples (1) or natural frequency samples (2). Pinheiro is a multi-scale, recurrent convnet, denoted RCNN3 (o3). The metric for geometry is pixel accuracy.

表5. SIFT Flow9 上具有類分割(中心)和幾何分割(右)的結果。 Tighe [33] 是一種非參數傳遞方法。 Tighe 1 是範例 SVM,而 2 是 SVM + MRF。 Farabet 是在類平衡樣本(1)或自然頻率樣本(2)上經過訓練的多尺度卷積網路。 Pinheiro 是一個多尺度的循環卷積網路,表示為 RCNN3(o 3)。 幾何指標是像素精度。

說明:

略。

-----

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.