Keras - ResNet
2021/03/21
-----
說明:
# 為本來的註解
## 為新增的註解
-----
## ResNet - 34
#coding=utf-8
from keras.models import Model
from keras.layers import Input,Dense,Dropout,BatchNormalization,Conv2D,MaxPooling2D,AveragePooling2D,concatenate,Activation,ZeroPadding2D
from keras.layers import add,Flatten
#from keras.layers.convolutional import Conv2D,MaxPooling2D,AveragePooling2D
import numpy as np
seed = 7
np.random.seed(seed)
def Conv2d_BN(x, nb_filter,kernel_size, strides=(1,1), padding='same',name=None):
if name is not None:
bn_name = name + '_bn'
conv_name = name + '_conv'
else:
bn_name = None
conv_name = None
x = Conv2D(nb_filter,kernel_size,padding=padding,strides=strides,activation='relu',name=conv_name)(x)
x = BatchNormalization(axis=3,name=bn_name)(x)
return x
def Conv_Block(inpt,nb_filter,kernel_size,strides=(1,1), with_conv_shortcut=False):
x = Conv2d_BN(inpt,nb_filter=nb_filter,kernel_size=kernel_size,strides=strides,padding='same')
x = Conv2d_BN(x, nb_filter=nb_filter, kernel_size=kernel_size,padding='same')
if with_conv_shortcut:
shortcut = Conv2d_BN(inpt,nb_filter=nb_filter,strides=strides,kernel_size=kernel_size)
x = add([x,shortcut])
return x
else:
x = add([x,inpt])
return x
inpt = Input(shape=(224,224,3))
x = ZeroPadding2D((3,3))(inpt)
x = Conv2d_BN(x,nb_filter=64,kernel_size=(7,7),strides=(2,2),padding='valid')
x = MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='same')(x)
#(56,56,64)
x = Conv_Block(x,nb_filter=64,kernel_size=(3,3))
x = Conv_Block(x,nb_filter=64,kernel_size=(3,3))
x = Conv_Block(x,nb_filter=64,kernel_size=(3,3))
#(28,28,128)
x = Conv_Block(x,nb_filter=128,kernel_size=(3,3),strides=(2,2),with_conv_shortcut=True)
x = Conv_Block(x,nb_filter=128,kernel_size=(3,3))
x = Conv_Block(x,nb_filter=128,kernel_size=(3,3))
x = Conv_Block(x,nb_filter=128,kernel_size=(3,3))
#(14,14,256)
x = Conv_Block(x,nb_filter=256,kernel_size=(3,3),strides=(2,2),with_conv_shortcut=True)
x = Conv_Block(x,nb_filter=256,kernel_size=(3,3))
x = Conv_Block(x,nb_filter=256,kernel_size=(3,3))
x = Conv_Block(x,nb_filter=256,kernel_size=(3,3))
x = Conv_Block(x,nb_filter=256,kernel_size=(3,3))
x = Conv_Block(x,nb_filter=256,kernel_size=(3,3))
#(7,7,512)
x = Conv_Block(x,nb_filter=512,kernel_size=(3,3),strides=(2,2),with_conv_shortcut=True)
x = Conv_Block(x,nb_filter=512,kernel_size=(3,3))
x = Conv_Block(x,nb_filter=512,kernel_size=(3,3))
x = AveragePooling2D(pool_size=(7,7))(x)
x = Flatten()(x)
x = Dense(1000,activation='softmax')(x)
model = Model(inputs=inpt,outputs=x)
model.compile(loss='categorical_crossentropy',optimizer='sgd',metrics=['accuracy'])
model.summary()
-----
————————————————
版权声明:本文为CSDN博主「wmy199216」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/wmy199216/article/details/71171401
-----
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.