DenseNet (二):Overview
2020/12/28
-----
施工中。。。
-----
https://pixabay.com/zh/photos/architecture-construction-sites-3254023/
-----
◎ Abstract
-----
◎ Introduction
-----
本論文要解決(它之前研究)的(哪些)問題(弱點)?
-----
# ResNet v2。
-----
◎ Method
-----
解決方法?
-----
# DenseNet。
-----
具體細節?
http://hemingwang.blogspot.com/2021/03/densenetillustrated.html
-----
◎ Result
-----
本論文成果。
-----
◎ Discussion
-----
本論文與其他論文(成果或方法)的比較。
-----
成果比較。
-----
方法比較。
-----
◎ Conclusion
-----
◎ Future Work
-----
後續相關領域的研究。
-----
# CSPNet
-----
後續延伸領域的研究。
-----
# Tiramisu
-----
-----
◎ References
-----
# ResNet v2。被引用 4560 次。重點從 residual block 轉移到 pure identity mapping,網路可到千層。
He, Kaiming, et al. "Identity mappings in deep residual networks." European conference on computer vision. Springer, Cham, 2016.
https://arxiv.org/pdf/1603.05027.pdf
# DenseNet。被引用 12498 次。反覆使用 conv1 也可加深網路。
Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
# CSPNet
Wang, Chien-Yao, et al. "CSPNet: A new backbone that can enhance learning capability of CNN." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2020.
# Tiramisu
Jégou, Simon, et al. "The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2017.
-----
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.