2019/12/02
-----
// Overview of different Optimizers for neural networks
-----
// An Overview on Optimization Algorithms in Deep Learning 1 - Taihong Xiao
-----
# Nadam
-----
// Stochastic Gradient Descent - Deep Learning#g - Medium
-----
References
# SGD
Bottou, Léon. "Stochastic gradient descent tricks." Neural networks: Tricks of the trade. Springer, Berlin, Heidelberg, 2012. 421-436.
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/tricks-2012.pdf # Nadam
Dozat, Timothy. "Incorporating nesterov momentum into adam." (2016).
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ -----
Overview of different Optimizers for neural networks
https://medium.com/datadriveninvestor/overview-of-different-optimizers-for-neural-networks-e0ed119440c3
An Overview on Optimization Algorithms in Deep Learning 1 - Taihong Xiao
https://prinsphield.github.io/posts/2016/02/overview_opt_alg_deep_learning1/
Stochastic Gradient Descent - Deep Learning#g - Medium
https://medium.com/deep-learning-g/stochastic-gradient-descent-63a155ba3975
-----
SGD(1) — for non-convex functions – Ang's learning notes
https://angnotes.wordpress.com/2018/08/19/sgd1-for-non-convex-functions/
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.