Tuesday, December 24, 2019

L0

L0

2019/12/09

-----


// Regularization in Machine Learning  Connect the dots

-----


// Foundations of Machine Learning  Part 4 - DZone AI

-----


// Topographic _ Regularized Feature Learning in Tensorflow [ Manual Backprop in TF ]

-----


// Lp space - Wikipedia

-----


// Topographic _ Regularized Feature Learning in Tensorflow [ Manual Backprop in TF ]

----- 


// Machine Learning & Data Mining CS_CNS_EE 155 Lecture 3  Regularization, Sparsity & Lasso ppt download

-----


// Regularization in Machine Learning  Connect the dots

-----

References

# L0
Louizos, Christos, Max Welling, and Diederik P. Kingma. "Learning Sparse Neural Networks through $ L_0 $ Regularization." arXiv preprint arXiv:1712.01312 (2017).
https://arxiv.org/pdf/1712.01312.pdf 

Foundations of Machine Learning  Part 4 - DZone AI
https://dzone.com/articles/foundations-of-machine-learning-part-4 

Machine Learning & Data Mining CS_CNS_EE 155 Lecture 3  Regularization, Sparsity & Lasso ppt download
https://slideplayer.com/slide/3345346/

L0 Norm, L1 Norm, L2 Norm & L-Infinity Norm - Sara Iris Garcia - Medium
https://medium.com/@montjoile/l0-norm-l1-norm-l2-norm-l-infinity-norm-7a7d18a4f40c 

Topographic _ Regularized Feature Learning in Tensorflow [ Manual Backprop in TF ]
https://towardsdatascience.com/topographic-regularized-feature-learning-in-tensorflow-manual-backprop-in-tf-f50507e69472 

Norm (mathematics) - Wikipedia
https://en.m.wikipedia.org/wiki/Norm_(mathematics) 

Lp space - Wikipedia
https://en.m.wikipedia.org/wiki/Lp_space 

Regularization in Machine Learning  Connect the dots
https://towardsdatascience.com/regularization-in-machine-learning-connecting-the-dots-c6e030bfaddd

笔记︱范数正则化L0、L1、L2-岭回归&Lasso回归(稀疏与特征工程) - 云+社区 - 腾讯云
https://cloud.tencent.com/developer/article/1436207

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.