2019/11/18
前言:
DeconvNet 是對稱的結構,由於並未取消全連接層,所以參數量還是很大。解碼器部分主要由 unpooling 和 deconvolution 構成,unpooling 通過記錄解碼器對應的 max pooling 的 indice 取得原始結構,其結果是稀疏的,使用 deconvolution 可進行學習。
-----
# DeconvNet
-----
# DeconvNet
-----
# DeconvNet
-----
References
# DeconvNet
Noh, Hyeonwoo, Seunghoon Hong, and Bohyung Han. "Learning deconvolution network for semantic segmentation." Proceedings of the IEEE international conference on computer vision. 2015.
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdfDeconvNet & SegNet
https://jimchenhub.github.io/posts/2019-04-16-DeconvNet%20&%20SegNet
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.