Tuesday, July 13, 2021

Machine Learning

Machine Learning

2019/04/22

-----


Fig. Machine Learning(圖片來源)。

-----

說明:

本文參考 [1] 的架構,將十個主要機器學習演算法 [2] 分成六大類。

C4.5
k-Means
SVM
Apriori
EM
PageRank
AdaBoost
kNN
Naive Bayes
CART

-----

I. Set
II. Metric
III. Linear Algebra
IV. Probability and Statistics
V. Information Theory
VI. Numerical Computation

-----

I. Set

ML(一):Apriori

-----

II. Metric

ML(二):k-Means

ML(三):k-NN

-----

III. Linear Algebra

ML(四):FA

ML(五):PCA

ML(六):LDA

ML(七):SVD

ML(八):t-SNE

ML(九):SVM

-----

IV. Probability and Statistics

ML(一0):Naive Bayes

ML(一一):HMM

ML(一二):Linear Regression

ML(一三):Logistic Regression

ML(一四):Ridge Regression

ML(一五):Lasso Regression

ML(一六):EM

ML(一七):Gibbs

ML(一八):Viterbi
 
-----

V. Information Theory

ML(一九):Maximum Entropy

ML(二0):Decision Tree

ML(二一):Pruning

ML(二二):Random Forest

ML(二三):AdaBoost

ML(二四):XGBoost

-----

VI. Numerical Computation

ML(二五):ALS

ML(二六):PageRank

-----

References

[1] Deep Learning Book - The Star Also Rises

[2] Top 10
Wu, Xindong, et al. "Top 10 algorithms in data mining." Knowledge and information systems 14.1 (2008): 1-37.

[3] Trends
Jordan, Michael I., and Tom M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349.6245 (2015): 255-260.

[4] TensorFlow和spark的ml以及python的scikit-learn 三者的区别是什么? - 知乎

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.