AI 從頭學(一):文獻回顧
2016/12/08
-----
Fig. Literature(圖片來源:Pixabay)。
-----
出版說明:
2019/08/14
最初要切進深度學習這個新領域時,依照學術慣例,先用 deep learning、review、survey,這幾個關鍵字,在 Google Scholar 找了幾篇論文,並且讀了其中幾篇,開始發表心得。
以 2015《Deep Learning》這篇為例,當初整篇看過一次,知道 Deep Learning 可以做什麼,但還是不知道 Deep Learning 要如何做。其實重要的幾篇,論文的參考文獻都有標示出來,最重要的 LeNet 也在其中。
總之,因為我持續在網路上發表心得,就有人告訴我從 LeNet 開始。這就是發表心得的好處,提供給讀者參考。
-----
References
[1] Lacey, Griffin, Graham W. Taylor, and Shawki Areibi. "Deep Learning
on FPGAs: Past, Present, and Future." arXiv preprint arXiv:1602.04283
(2016).
[2] Wang, Hao, and Dit-Yan Yeung. "Towards Bayesian Deep Learning: A Survey." arXiv preprint arXiv:1604.01662 (2016).
[3] Schmidhuber, Jürgen. "Deep learning in neural networks: An overview." Neural Networks 61 (2015): 85-117.
[4] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521.7553 (2015): 436-444.
[5] Yu, Dong, Li Deng, and D. Yu. "Deep Learning Methods and Applications." Foundations and Trends in Signal Processing (2014).
[6] Bengio, Yoshua, Aaron C. Courville, and Pascal Vincent.
"Unsupervised feature learning and deep learning: A review and new
perspectives." CoRR, abs/1206.5538 1 (2012).
[7] Bengio, Yoshua. "Learning deep architectures for AI." Foundations and trends® in Machine Learning 2.1 (2009): 1-127.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.